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Environmental sound levels often represent the cumulative contributions of many types - 

and possibly an uncountable number - of sound sources necessitating a statistical approach 

to modeling. Machine learning algorithms have been used to build regression models that 

predict sound levels across the contiguous United States. These models discern often 

nonlinear and interacting relationships between measured sound levels and local 

environmental summaries extracted from nationwide geospatial data layers. Tens of 

environmental factors were examined including climate, topography, human activity, and 

time of day. Diagnostic tools, like partial dependence plots, can reveal the effects of 

influential factors on measured sound spectra. These results illustrate the foundations of 

many spatiotemporal patterns in acoustic resource conditions, and provide tools for 

understanding the potential consequences of shifts in environmental conditions. Modeled 

predictions of ambient one-third octave band sound levels also provide a tool for predicting 

the audibility of noise on large landscape scales. 

 

1 INTRODUCTION 

 

 Environmental sound levels are summaries of all ambient acoustical energy at a particular 

place and time outdoors. Prominent sources include transportation, industry, recreational 

activities, weather, and flowing water. Environmental noise is extraneous or unwanted sound, 

and urban noise problems have a long history and global significance. As in many other urban 

centers, noise is the number one complaint to the New York City Department of Environmental 

Protection
1
. In addition, noise is not confined to urban areas, and the effects of noise are not 
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confined to humans. Recent work has documented substantial changes in animal foraging and 

anti-predator behavior, reproductive success, population density, and community structure due to 

anthropogenic noise
2
. 

 The ecological breadth of noise impacts is presaged by the ubiquity and extent of 

anatomical investment in the auditory sense among most multicellular organisms. Hearing 

provides panoramic environmental awareness, alerting animals to events near and far, past and 

present. Sounds provide information about a diverse range of physiographical, biological, and 

anthropogenic processes and events. Environmental sounds exhibit consistent patterns across 

time and space: windy afternoons, dawn choruses of birds, nocturnal choruses of frogs and 

insects, and rush hours of human transportation. 

 Given the adverse effects of noise, it is critical to understand its spatial extent and the 

factors that most strongly affect various measures of noise exposure. Many noise studies account 

for a single source in a limited area, to realize a tractable scenario for noise propagation 

modeling. Many noise studies focus on a single noise metric. Single metrics and thresholds may 

fail to capture important information. For example, the majority of aircraft noise complaints 

received in Australia come from people who live outside the published noise contours
3
.  

 The diversity of contributions to environmental sound levels combines with the 

impracticality of comprehensive measurement to suggests a statistical approach to modeling. 

Statistical models can extract patterns from a large number of point measurements to predict 

patterns that apply over large spatial scales. In this paper we take a few steps towards exploring 

the spatiotemporal patterns of environmental sound that exist on landscape scales. Our focus is 

on available data and a geospatial sound modeling framework. Geospatial sound modeling was 

introduced in the context one-third octave band sound pressure level (SPL) spectra measured in 

National Park Service (NPS) units, most of which were distant from urban areas
4
. Here, we 

extend the analysis of environmental sound across the contiguous United States to include urban 

as well as rural areas. 

 

2 EMPIRICAL DATA 

 

2.1 Environmental Sound Levels 

  

 The United States has an enormous range of acoustic diversity, from painfully loud 

conditions at the edge of airport runways to dormant volcanic craters so quiet that the best sound 

level meters are inadequate to measure their sound levels. Dry, barren habitats may be devoid of 

any local sound sources for long periods of time, whereas lush wetlands may contain 

uncountable numbers of sound sources most of the time. Two data sets, natural and urban, were 

used to address the acoustic diversity of the country. In total, roughly 1.5 million hours from 492 

geographically unique site locations distributed across the contiguous United States were 

incorporated; a map of the site locations appears in Figure 1. 

 The natural dataset came from the archive of NPS acoustical measurements collected in 

National Park units during the years from 2000 to 2014. Note that the term natural is used instead 

of rural, recognizing the superlative environmental quality that is the management standard for 

these units. The urban data includes a small subset of sites that are classified as rural by the 

United States Census Bureau
5
. Seasonal exceedance level metrics were derived from one second 

A-weighted Leq measurements made using ANSI Type 1 sound level meters. The durations of 

measurements in natural areas are typically 25 days or longer to obtain statistics encompassing a 

representative sample of weather and other varying factors. 498 seasonal observations from 333 



unique locations were calculated. Further details regarding the measurements and subsequent 

processing have been published elsewhere
4
. 

 
Fig. 1 – Map of natural and urban site locations.  

 The urban data set is a collection of measurements from airport noise monitoring systems
6
 

and NPS sites in 14 urbanized areas
5
 across the United States: San Antonio, TX, Austin, TX, 

Vicksburg, MS, Los Angeles, CA, Riverside, CA, Kill Devil Hills, NC, San Francisco, CA, 

Washington, DC, Denver, CO, Bridgeport, CT, New York, NY, Boston, MA, Milwaukee, WI, 

and Seattle, WA. Many airports maintain several noise monitoring systems in the airport vicinity 

and surrounding community (the set considered contains site locations up to 25 km from the 

airport). Protocols and equipment vary, but all airports reported several A-weighted statistics for 

each hour of the day during the year 2013. These hourly data were summarized using methods 

similar to the natural set to generate comparable metrics for 497 seasonal observations from 159 

unique urban locations. 

 Seasonal hourly A-weighted L50 SPL for the 995 observations were calculated from 

available measurements; box and whisker plots of these observations are shown in Figure 2. The 

natural levels range from 8 dBA to 69 dBA, although the lowest measurements are biased 

upwards by the self-noise of the equipment. The median of natural levels follows the shape of a 

typical temperature profile during the day, gradually increasing after sunrise and falling after 

sunset. The dynamic range of urban levels is narrower than natural. The urban levels began 

rising sharply at 5AM to a maximum at 8AM, then remain fairly constant until the evening rush 

hour which peaks at 6PM.  

 

2.2 Physiographical data 

 

 The spatial patterns of sound levels are dependent on a complex linkage of environmental 

and anthropogenic factors. To formulate a model we considered many factors that might 

influence acoustic propagation, the presence of acoustic sources, or both. For the most part, our 

choice of variables was limited to what could be derived from available geospatial data layers 

with national coverage. It also included variables that describe the time of measurement and 

control for the varying equipment used.  

In total, 115 potential explanatory variables in 7 categories were considered: topography, 

climate, landcover, hydrology, anthropogenic, time, and control. Many of the variables are 



variations of a given quantity that has been summarized using multiple statistics over multiple 

spatial scales. A list and description of the variables can be found in Table A.1; more detail on 

the original data layers and derivation of metrics is available
7
. 

 
Fig. 2 – Box and whisker plots showing the quartiles, median, and outliers of the hourly A-

weighted L50 sound pressure levels in the urban set (left panel) and natural set (right panel).  

 

3 GEOSPATIAL MODEL OF ENVIRONMENTAL SOUND LEVELS 

 

Geospatial sound models incorporate spatial representations of physiographical and 

anthropogenic factors to assess expected contributions to the existing SPL from both 

anthropogenic and natural sources. The models do not directly apply the physics of sound 

propagation or characteristics of individual sound sources. Instead, a regression model is trained 

to find relationships between the explanatory variables and response
4
. Models are based on the 

Random Forest algorithm
8
; this is an ensemble method that can capture spatiotemporal patterns 

that may be exhibited by only a small portion of the available sample.   

 

3.1 Influential explanatory variables 

 

Identifying the influential explanatory variables is crucial to model formulation and a first 

step towards understanding spatiotemporal patterns of sound levels. For this work, variable 

rankings are based on how much error is induced by permutations of that quantity, which can 

also influence interactions. It is also important to keep in mind that sound levels are dominated 

by the loudest signals.  

The dominant factors driving the A-weighted L50 SPL are related to land use, climate, and 

traffic corridors. The variables in the optimal model are listed below in Table 1, ranked by 

importance. The other potential explanatory variables decrease the predictive power of the model 

and were omitted. It is likely that these factors are irrelevant. However it is also possible that a 



given quantity was poorly represented or its influence was not significant within the available 

training data. 

Table 1 – Variables included in the daytime A-weighted L50 geospatial sound model. 

Rank Name Rank Name Rank Name 

1 VIIRS_270_Mean 16 DistRoadsAll 31 PopTotal50km 

2 Shrubland5km 17 TAvgNorms 32 Slope 

3 PhysicalAccess 18 Elevation 33 FlightFreq 

4 TAvgWint 19 VIIRS_69120_Mean 34 DistCoast 

5 PPTNorms 20 Developed5km 35 DistAirpHigh 

6 VIIRS_4320_Min 21 TDewAvgWint 36 UrbanLow200m 

7 TDewNorms 22 VIIRS_4320_Mean 37 DistStreamO4 

8 Forest5km 23 DistRoadsMajor 38 Extractive5km 

9 PPTSummer 24 DistAirpMoto 39 RddAllPt 

10 VIIRS_1080_Min 25 Built200m 40 MilitarySum 

11 VIIRS_69120_Max 26 Forest200m 41 circDayY 

12 Evergreen5km 27 Grazing5km 42 circDayX 

13 TDewAvgSumm 28 Wind 43 ndBA 

14 DistAirpSea 29 DistAirpMod 44 DistStreamO1 

15 PPTWinter 30 PopDensity50km 45 DistRailroads 
 

 

3.2 Predictive performance  

 

 Geospatial models for a variety of acoustic metrics have been derived using established 

methods
4
. For brevity, results and discussion herein focus on the existing seasonal daytime A-

weighted L50 SPL (the response). After identifying significant explanatory variables, the model 

fit was evaluated using an exhaustive leave-one-out cross validation to account for correlation 

among the observations. The predicted levels from a model using all observations and the 

predicted level from 995 cross-validated models each using a limited training set appear in 

Figure 3.  

 



Fig. 3 –  The predicted levels from a model using all observations (left panel) and cross-

validated models each using a limited training set (right panel) relative to the measured SPL.  

The full model fit shows excellent correlation with the empirical data (R
2 

= 0.98). The 

ensemble nature of the random forest algorithm helps reduce overfitting, but any model is at risk 

of overfitting the training data and distorting the perceived performance. Cross validation can 

provide a quantitative measure of how well the model will generalize to uncharted locations 

outside of the available training data. In this case, collocated observations were removed from 

training sets to avoid bias from temporal correlation
4
. The accuracy of prediction diminishes with 

the knowledge of underlying patterns and thus, rare conditions are prone to error: one systematic 

problem is that sound levels at the quietest sites are overestimated and levels at the loudest sites 

are underestimated.  Statistics describing the prediction accuracy relative to a null model (mean 

of response) are shown in Table 1.   

Table 2 – Performance statistics: RMSE is the root mean squared error, MAD is the median 

absolute deviation, Null is the residuals of the mean, and GSM is the cross validation residuals 

of the geospatial sound model. 

GSM, RMSE Null, RMSE GSM, MAD Null, MAD % Explained 

4.40 11.12 2.29 8.7 84 
 

The difference between the median absolute deviation and root mean square error may in 

part be attributed to outliers. The largest errors arise from inadequacies of the geospatial data to 

describe powerful, consistently active sources like nearby rivers and roads. For example, winter 

sound levels were overestimated at Sand Creek Massacre National Historic Site because the 

nearby creek was dry during the measurement period. Despite the large library of empirical data, 

extreme or unusual sonic environments are very sparsely represented. This compromises the 

model performance, and it amplifies the prediction error estimated from leave-one-out analyses. 

The model describes the expected long term conditions in most places. 

4 DISCUSSION  

 

4.1 Differences between urban and natural environments  

 

 The Visible Infrared Imaging Radiometer Suite (VIIRS) class of variables is very influential 

as indicated by Table 1. These variables describe the upward radiance at night as measured by 

satellite and are indicative of the degree of human habitation. More precisely, spatial analyses of 

light pollution in urban areas suggest that these variables commonly represent roadways and 

areas developed for industrial and commercial use
9
. Figure 4 shows a scatterplot of 

VIIRS_270_Mean and the L50 SPL for all observations. The VIIRS_270_Mean explanatory 

variable provides a clear distinction between the urban and natural sets and is likely one of the 

first splits in many trees of the random forest model. While VIIRS_270_Mean is uniformly close 

to zero for most natural observations, there is a linear relationship between the light and sound 

emitted in urban areas. Few other explanatory-response relationships are as direct and consistent 

across the sample.   

Because of the structure, size and complexity of a random forest model, the relationships 

between response and explanatory variables are difficult to interpret relative to more common 

models in which a functional relationship is explicit. A partial dependence function is the 

average predicted response given permutations of explanatory variables and can provide some 

insight
4
.  



 
Fig. 4 –  Scatterplot of VIIRS_270_Mean and emprical observations of daytime sound level.  

 

The partial dependence of the response on the proportion of forested land cover within 5 km 

of the receiver location is shown in Figure 5. The left panel and right panels document the 

contrasting trends in urban and natural area. In natural areas, increasing amounts of forested area 

often lead to increased sound levels. Prominent sources are wind interacting with vegetation, and 

more extensive and persistent biological choruses. Note that our data set disproportionately 

represents drier habitats in the western U. S., and this relationship might look different in a large 

data set taken from wetter habitats in the eastern U. S. In urban areas, increasing amounts of 

forested area are often correlated with reduced industrial and transportation activity.   

 
Fig. 5 –  Partial dependence of the L50 SPL on Forest5km considering urban sites only (left) and 

natural sites only (right). The rug shows values of Forest5km for the observations considered. 



4.1 Interacting drivers of biomes and natural sound levels 

 

Biomes are geographic areas with similar environmental characteristics and are occupied by 

a set of organisms adapted for the conditions therein. Classification schemes are commonly 

defined by climatic parameters such as temperature and precipitation, although soil and sun 

exposure are also important factors
10

. Some of these factors are not explicitly included in our 

current geospatial sound model. Temperature, precipitation, latitude, elevation, and humidity are 

related, yet exceptions to these general relationships distinguish some places. For example, 

Figure 6 shows that the relationship between average yearly temperature and humidity is 

modulated by precipitation. When the simultaneous influence of two variables on a third is not 

purely additive, those two variables are said to interact. The presence of interactions makes 

formulating and interpreting models more difficult.   

 

 
Fig. 6 – Interaction between average annual temperature, humidity, and precipitation 

considering the natural set only.  

 

In terrestrial environments, biodiversity generally increases with primary production, 

moisture availability and temperature. Similarly, moisture and temperature are important drivers 

of natural sound levels. Considering the natural set only, the clearest relationship with sound 

pressure level is provided by moisture as described by the dew point temperature. This 

relationship and the interaction with elevation are shown in Figure 7. At low and mid elevations, 

sound levels increase with moisture. However, at very dry sites, there is an increase in level 

which is accompanied by high elevations (note that there is not a strong correlation between 

sound level and elevation alone). These sites also have lower temperatures, which actually tends 

to decrease sound levels. To some degree, these patterns are captured in the geospatial sound 

model by the random forest algorithm.  

 



 
 

Fig. 6 – Interaction between the L50 sound pressure level, average annual humidity, and 

elevation considering the natural set only.  

 

5 CONCLUSIONS 

 

Environmental sound levels often integrate an uncountable number of contributing acoustic 

sources. The time-averaged magnitude of sound pressure is one of the most fundamental 

quantities we have to describe this integration. Although many important characteristics are 

unmeasured by this simple metric, sound levels can efficiently distinguish a wide range of 

acoustical conditions. In this paper, we sought a deeper understanding of how anthropogenic and 

physiographical factors are driving sound pressure levels across the United States.  

An understanding of patterns is crucial for building models, for interpreting measured 

conditions, and for predicting conditions under hypothetical scenarios. The patterns described in 

this study were extracted from components of a geospatial sound model that was trained on 

empirical data from a wide range of locations and acoustical conditions. This paper helps bridge 

the gaps between maps of sound level, the underlying models, and explanatory geospatial data. 

This paper also provides a reference for improved geospatial sound models that include 

additional explanatory geospatial data and extended support for urban areas across the 

contiguous United States. 

In addition to the patterns revealed by the internal structure of the geospatial model, patterns 

are also evident in the maps generated from the geospatial model
4, 11

. Different patterns emerge 

from examining these maps across a range of scales: small towns, urban areas, national parks, 

and larger regions. These maps provide spatially explicit pictures of ambient sound levels that 

will prove valuable in many contexts, including: improving predictions of noise audibility
12

, 

guiding noise mitigation investments, providing support for large landscape conservation 

assessments, informing plans to enhance ecosystem resilience to climate change.  
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A APPENDIX 

 

Table A.1. Initial potential explanatory variables, spatial resolution, and description by 

category. Area of analysis indicates radius of circular area or cylindrical volume centered at 

site.  

 
Variable Area of analysis Description Units 

    

Topography    

Elevation Point Digital elevation, height above sea level meters 

Slope Point Rate of change of elevation degrees 

TPI Point Topographic position index (e.g. ridge, slope, valley) categorical 

    
Climate    

PPTSummer Point 10 year average summer precipitation mm 

PPTWinter Point 10 year average winter precipitation mm 

PPTNorms Point 10 year average yearly precipitation mm 

TAvgSumm Point 10 year average summer average temperature degrees C 

TAvgWinter Point 10 year average winter average temperature degrees C 

TAvgNorms Point 10 year average yearly average temperature degrees C 

TdewAvgSumm Point 10 year average summer minimum dew point degrees C 

TdewAvgWint Point 10 year average winter maximum dew point degrees C 

TdewAvgNorm Point 10 year average yearly minimum dew point degrees C 

Wind Point Annual mean wind speed, 1960-1990 m/s 

    
Landcover    

Barren 200m, 5km Proportion of Barren landcover % 

Cultivated 200m, 5km Proportion of Cultivated landcover % 

Deciduous 200m, 5km Proportion of Deciduous Forest landcover (level 2) % 

Developed 200m, 5km Proportion of Developed landcover % 

Evergreen 200m, 5km Proportion of Evergreen Forest landcover (level 2) % 

Forest 200m, 5km Proportion of Forest landcover % 

Herbaceous 200m, 5km Proportion of Herbaceous landcover % 

MixedForest 200m, 5km Proportion of Mixed Forest landcover (level 2) % 

Shrub 200m, 5km Proportion of Shrubland landcover % 

Snow 200m, 5km Proportion of Snow landcover  % 

Wetland 200m, 5km Proportion of Wetlands landcover % 

Water 200m, 5km Proportion of Water (only) landcover % 

    
Hydrology    

DistCoast Point Distance to nearest coastline m 

DistWaterBody Point Distance to nearest body of water m 

DistStreamO Point Distance to nearest stream with Strahler order greater than 

1,3, or 4 

m 

    
Anthropgenic    

Built 200m, 5km Degree of human modification from built land use ratio 

Commercial 200m, 5km Degree of human modification from commercial land use ratio 

DistAirpHeli Point Distance to nearest heliport  m 



DistAirpHigh Point Distance to nearest high volume airport  m 

DistAirpLow Point Distance to nearest low volume airport  m 

DistAirpMod Point Distance to nearest moderate volume airport  m 

DistAirpMoto Point Distance to nearest motorized airport  m 

DistAirpSea Point Distance to nearest seaplane airport  m 

DistMilitary Point Distance to nearest military flight path m 

DistRailroads Point Distance to nearest rail line m 

DistRoadsAll Point Distance to nearest road (all roads) m 

DistRoadsMaj Point Distance to nearest road (major roads) m 

Extractive 200m, 5km Degree of human modification from extractive land use ratio 

ExurbanHigh 200m, 5km Degree of human modification from high exurban land use ratio 

ExurbanLow 200m, 5km Degree of human modification from low exurban land use ratio 

FlightFreq 25km Total weekly flight observations count 

Grazing 200m, 5km Degree of human modification from grazing land use ratio 

Industrial 200m, 5km Degree of human modification from industrial land use ratio 

Institutional 200m, 5km Degree of human modification from institutional land use ratio 

MilitarySum 40 km Sum of designated military flight paths count 

Park 200m, 5km Degree of human modification from park land use ratio 

PhysicalAccess point Travel time given transportation infrastructure and off-trail 

permeability 

ratio 

PopDensity 50km Density of individuals per 2010 US Census count/km2 

PopTotal point, 50km Total number of individuals per 2010 US Census  count 

RddAll 200m, 5km Road density, sum of road lengths (all roads) divided by 

area of interest 

km/km2 

RddMajor 200m, 5km Road density, sum of road lengths (major roads only) 

divided by area of interest 

km/km2 

RddWeighted 200m, 5km Road density, sum of road lengths (weighted by class) 

divided by area of interest 

km/km2 

Suburban 200m, 5km Degree of human modification from suburban land use Ratio 

Timber 200m, 5km Degree of human modification from timber land use Ratio 

Transportation 200m, 5km Degree of human modification from transportation land use Ratio 

UrbanHigh 200m, 5km Degree of human modification from high urban land use Ratio 

UrbanLow 200m, 5km Degree of human modification from low urban land use Ratio 

VIIRS 270m, 1080m, 

4320m, 17280m, 

69120m 

Maximum, Mean, and minimum upward radiance at night  nW/cm2/sr 

WaterHum 200m, 5km Degree of human modification from water land use Ratio 

Wilderness 16 km Sum of designated wilderness in area of interest m2 

    

Time    

circDayX Point Annual position, spring/fall Radians 

circDayY Point Annual position, winter/summer Radians 

dayLength Point Average length of day during deployment Hours 

    

Control    

nf Point Noise floor of measurement equipment dB SPL 

 


